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A b s t r a c t  

In a preceding paper, the author has developed a new 
method of phase determination using latent lattices. The 
structure is generated by a shift function which 
displaces the atoms from their idealized position into 
the correct one. As a consequence, the number of 
phases to be determined in reciprocal shift space is 
reduced to m/2 (M = number of atoms in the unit cell). 
The application of the new method is subject to a 
transformation of conventional Fourier coefficients to 
those of the shift function. This is greatly facilitated by 
some known conventional phases. In the case of little 
phase information, a rough proposal may suffice to start 
the solution of certain sets of linear equations. Each 
atomic distance in the unit defines a system of M -  1 
independent equations. In spite of their interdepen- 
dence, each system yields just one solution of the phase 
problem. Two different methods may be applied: (i) 
( M -  1)/2 exact independent pieces of information on 
distances may be used to evaluate the corresponding 
system of linear equations; or (ii) a rough model of the 
structure with averaged atomic distances or coordinates 
may serve to apply certain sets of 'joker' equations, 
providing displacements of atoms into the correct 
direction. In this way, a refined model can be proposed 
for a repeated use of the joker equations. At the end of 
this process, a conventional refinement of the structure 
should be performed. The principles of the new method 
are explained with the aid of a simple one-dimensional 
model structure containing one kind of atom only. 

1. Introduction 

In a preceding paper, the author (Jagodzinski, 1994; 
hereafter I) suggested a new method for the solution of 
the phase problem in diffraction, using latent lattices 
(= primitive lattice of point scatterers). The effectiveness 
of this method is demonstrated in this paper for the one- 
dimensional (1D) case only, but its extension to 3D 
structures is a question of an adequate computer 
program rather than a question of principle. For a 1D 
crystal containing a single kind of atom, the lattice 
constant a t of the latent lattice is nothing more than the 

s(v/M) = a o + 2 

and its inverse 

average distance (d) of the structure consisting of M 
atoms, which may be described in a cell with the lattice 
constant Ma t. As shown in I, the mathematical 
treatment of the diffraction problem demands the 
following slightly different definition of the normalized 
structure factor: 

E'(h)=ahexpi~o h = ( l / M )  ~ exp(27rihxv). (1) 
p 

With the latent lattice, x~ in (1) can be replaced by 

x~ = v /M + s(v/M), 

where the shift function s(v/M) describes the displace- 
ment of the vth atom from its ideal position v/M. Fig. 1 
shows a typical picture of s(v/M) for two molecules 
separated by a large distance. The construction is 
nothing more than an inclined projection. With the 
definition given for s(v/M), (1) becomes (M = odd) 

(M-l)/2 
E'(h) = ( l /M)  ~ exp{27rih[v/M + s(v/M)]}. 

v=-(M-1)/2 

(2) 
For even M, the sum in (2) has to be extended from 
- M / 2  to +M/2.  The evaluation of (2) with the aid of 
Bessel functions has been described in I for the general 
3D case, using a conventional Fourier series for 
s(v/M) : 

(M-l)/2 

ah, cos[27rh'(p/M) -I- ~o~e ] (3) 
h'=l 

(M-1)/2 
a~eexpi~p h, = ( l /M)  ~ s(v/M)exp{2zri[h'(v/M)]}. 

v=-(M-1)/2 

(4) 
It should be pointed out that a new reciprocal space has 
been defined in (3) with the property that a o can be 
omitted (displacement of the origin in real space). Since 
the Fourier coefficients ah, (hereafter Fc's) describe 
shifts of atoms, they are different from the conventional 
Fc's for electron density. For this reason, we shall use  
the terms real and reciprocal shift space in the 
following. As shown in I, only ( M -  1)/2 (M -- odd) 
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Fc's, a h, exp(i~0h,), are needed for the full description of 
the structure. For M = even, M / 2  Fc's, ah,, are 
necessary, with the restriction that the phase of aM/2 is 
0 or rr. Since both phases describe the two structures 
correlated by a centre of symmetry, there is a free 
choice of them. In order to avoid confusion, we shall 
derive all formulae for M = odd, unless it is explicitly 
stated that M = even. 

The fundamental difference between (1) and (3) can 
easily be demonstrated. Equation (1) yields Fc's, 
restricted to points in reciprocal space, but no periodic 
property is involved. Equation (3) represents points in 
real and reciprocal shift space and both have periodic 
properties. It will be shown below that this almost 
complete equivalence in real and reciprocal shift space 
yields strong correlations between different ah, and tph,. 
These correlations do not exist at all if the electron- 
density concept is used. Statistical phase relations 
originate from the use of point scatterers in the 
calculation of structure factors. They are considerably 
weaker than those caused by using the shift space. 

The transformation of conventional Fc's a h exp(i~0h) 
intO ah, exp(i~0h,) has been described in I for the 3D case. 
Since only relative phases may be determined, some 
other information is necessary. As has been stated in I, 
the applicability of the method depends largely on the 
existence of reflections with small diffraction angles 
(larger distance fluctuations). Since they are correlated 
with fluctuations of observed intensities, it may be 
concluded that (almost) random distributions of atoms 
in the unit will cause considerable difficulties in the 
transformation of the experimental data. This difficulty 
will never occur in periodically ordered structures, 
however, where the atoms are far from being randomly 
distributed. The transformation of Fc's from conven- 
tional reciprocal to reciprocal shift space may be 
simple, as long as the a h (ah,) are not too large. Since 
mutual trespassing of points is prohibited, this condition 
is satisfied in most cases, as has been discussed in I. 
Therefore, we shall postpone the discussion of the 
practical procedure to a later paper, dealing with its 

t _  

s(d;) 

L. itntlrml~aJ~ _1 

- - t r n a ~ e 2  t 

L 

Fig. 1. Reconstruction of two molecules, ~parm~i by a large 
distance, as a projcx~tion of the displacement function s(v/M). 

application in three dimensions. One point, however, 
should be added here: the transformation of a h and tph to 
a h, and ~Ph' cannot be done separately because of the 
interdependence of the two quantities. In the case of 
very small ah,, the information on phases tp h, may be 
lost. For this reason, only the information on a h, is 
reliable. This connection between a h, and tph, might be 
used to argue that all phase information is lost by this 
transformation. This conclusion seems to be supported 
by the fact that each set of phases yields a different real 
function s ( v / M ) .  This argument is as wrong as it is 
plausible, however. It is the main object of this paper to 
show that ae still contains more phase information than 
any other statistical method. 

2. Latent lattices 

The shift function s ( v / M )  replaces electron density in 
the conventional theory of diffraction. Consequently, all 
laws for Fourier transformation can also be applied to 
real and reciprocal shift space, the displacement law 
excepted, where discrete displacements only are 
admitted, a 0 = 0 is valid if the average over all 
displacements is zero. At small diffraction angles, the 
diffraction effects between density and displacement 
waves are similar as far as the amplitudes are 
concerned. The phases, ¢Ph and ~0h,, however, differ by 
rr/2 in a fair approximation as long as their Fc's 
describe density waves. It should be stressed once more 
that this relationship holds for small h, h' only. It should 
be added that the treatment of the diffraction problem 
using real and reciprocal shift space is a 6D representa- 
tion for 3D crystals, and a 2D representation for chain 
structures. 

A simple formula for the difference s[(v + 1 ) / M ] -  
s ( v / M )  has been given in I [equation (15) in I]. It 
determines the corresponding difference of distances 
between two neighbours: 

Ad]v = s[(v + 1)/M] - s ( v / M ) .  

In this paper, we generalize this definition to any pair 
(next, next but one etc.)  of neighbours using the 
corresponding relation 

Adnv = s[(v + n ) / M ]  - s ( v / M ) ,  (5) 

representing the distance dn~ = n a I + Adn~. 
With this new definition, equation (15) in I becomes 

(#t-1)/2 
Ad~ = --4 ~ {ae sin(rrnh'/M)[sin(t~,~)xe 

h'=l 

+ c o s ( a ~ )  Yh']} (6) 

with ~t~v = (2zrh ' /M)(v  + n/2), xh, = cos ~o,,, Yh, = 
sin ~h,. 

Since aw are considered to be known, (6) represents a 
two-dimensional system (v, n) of equations that have to 
be solved with respect to the unknown variables ~o,, and 
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Ad~. Each n (= no) represents a solution of the problem 
if Ad.~ is known. Since Xh,, Y~: are not independent 
varial~Tes, and small ah, excludes the corresponding Xh,, 
Yh', the number of equations necessary for the solution is 
reduced. On the other hand, Ad~ are unknown, but it 
should be remembered that Ad,~ -- 0 represents a kind 
of zero approximation, namely the latent lattice itself. 
Now we have two possibilities to solve the phase 
problem: (i) to introduce a proposed structure in order 
to evaluate the (overdetermined) set of equations 
statistically; or (ii) to select the necessary number of 
most reliable equations for the direct mathematical 
solution. Small a~: reduce the number of variables, 
while small Ad~ reduce the number of necessary 
equations. These two important properties emphasize 
the effectivity of the new method. Another property of 
(6) should be briefly discussed. There are two ways to 
develop the structure. For fixed v, the structure is 
determined by the variable n; this is a local approach to 
the correct structure. On the other hand, for each n and 
variable v, the structure is developed in terms of a 
series, using next (n = 1), next but one ( n - - 2 )  etc. 
nearest neighbours. This seems to be trivial for n = 1 
only, but for n -- 2 the situation is essentially the same: 
for all pairs involved, each position appears twice, 
namely as starting and as reference atom. Although 
correlated with the distances for n - - 1 ,  however, 
different distances are involved resulting in a different 
set of equations (compare Fig. 3c). Moreover, the 
coefficients a~h, in (6a) are different in so far as for 
small n the reflections with low h' have a lower weight 
because of the factor sin(rrnh'). The author admits that 
the situation seems to be confusing, but this may be 
explained by the fact that the Fc's (amplitudes and 
phases) have to satisfy numerous conditions in order to 
arrive at a unique solution. In other words, different 
ways may be taken, which end at the same structure. 
Since we take care in satisfying these conditions, many 
equations, although interdependent, may be used for the 
solution. We have M - 1 equations for v and (M - 1)/2 
for n, hence the number of equations corresponds 
exactly to the number of distances in the structure or the 
corresponding peaks in the Patterson function. Each 
distance represents one equation for phase determina- 
tion. Dependent equations are dropped by avoiding 
closed cycles of distances. 

It is useful to separate the sine and the cosine parts in 
(6). This can be done in the following way. With a 
rearrangement of the set of equations given by (6) and 
with the aid of v' = v + n /2 ,  (6) can be transformed to 

Now any pair of equations v', - v', can be replaced by 
their sum and their difference: 

(M-l) /2 

Ad,.~, -F Ad,  _~, = --8 ~ a ~  cos(2rth 'v ' /M) yh,, 
h'=l  

(Ta) 

Ad,,,~, - zad,,,_~, = - 8  

(M-I) /2 

a~, sin( 2rmh' v' / M) xh, . 
h'=l  

(7b) 

For a centrosymmetric structure, we have 

Ad~,~, - zad.,_~, -- O, 

therefore (7b) vanishes, all phases must be rr/2 or 3zr/2, 
and all Yh' become +1. This property of (7a) seems to be 
similar to conventional sign-determination methods. It 
should be noted, however, that the conditions imposed 
on (7a) are considerably stronger than those derived for 
usual sign determination. Since equations have to be 
satisfied for factors 4-1, the distribution law of signs can 
be found. 

The advantage of (6) and (7) is easily recognized. 
Structural information as well as transformed phase 
information from experimental methods enter the same 
equations. Each n represents just one system of 
independent equations. The phases are the same in all 
systems but the a,,,, are different for each n. As a 
consequence, a statistical evaluation with different 
weights due to a,,,, is possible. Small a~h, cancel the 
influence of their corresponding phases ~0h,. This 
property allows for direct phase determination using 
known structural information. This method may be 
developed for the 3D case in a straightforward manner. 
Since weak a~, reduce the number of unknown phases, 
fewer equations are needed for phase determination. In 
this way, uncertain structural elements may be 
neglected in the course of the various approximations 
to the structure. 

At the beginning of this procedure, (7a), (7b) may be 
used to determine the signs of all Yh' and Xh,. After 
having resolved the ambiguities of signs, (6a) has to be 
used in the following way. As soon as the phases ~o h, are 
known within a certain limit of error, it may be replaced 
by tp~, + AtPh,. With this definition, (6a) transforms to 

(M-l) /2  

Ad,~ = --4 ~ {a~h,[COS(Ot,~,~ + tp °) sin Atph, 
h'=l  

+ sin(~,~,~ + ~o~,) cos z~o~]}. 

(M- I)/2 

Aa,,¢ = --4 E 
h'=l  

{a~[sin(2rrh' v' / M )  x~: 

+ cos(2,rh'v'/M)y,A} ( 6 a )  

with ann, = a,, sin(zrnh'/M). 

With 

A ~  = --4 

we get 

(M-l) /2  

E 
h'=l  

a ~  [sin(o~v + tp °)  cos A~0~: ], 
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(u-t)/2 
Ad,, , -  A~ ,  = --4 E 

ht=l 
a~e c o s ( a ~  + ~0 °)  sin Agv. 

(8) 

As soon as the A~p h, are small, cos A~ph, in (8) 
approaches unity and z ~  represents an approximated 
Ad,,,, differing only slightly from the correct value. 
Since this property will not be used in this paper, its 
application will be discussed in a later investigation. 

Finally, it should be mentioned that (6) may be 
transformed into a Fourier series in the following way. 
Using 

d~ = -2a,a,,, ~P,,h, = zrn(h'/M) + zr/2 + ~Ph', 

we get 

( M - I ) / 2  

ad.,, = 2 E 
h'=l 

a',, h, cos[(2rrh'v/M) + ~o~,]. (9) 

Equation (9) is nothing more than the Fourier series for 
Ad,,~. Its inverse is 

I a ~  exp(hp~) = (1/M) 
(M-l)/2 

y] Ad,,~ exp(2rrih'v/M). 
v=--(M- 1)/2 

(10) 

Let us now briefly discuss the meaning of (3) and (9) for 
the new method of phase determination. They represent 
a kind of 'joker' in the following sense: once an 
approximate proposal of the structure has been found 
that yields a set of amplitudes anh, different from the 
corresponding known values and phases ~p,~,, (3) and (9) 
may be applied using the phases with the correct a,,h,. If 
the proposal was acceptable, this procedure yields 
displacement towards an improved structure. Since we 
have one basic joker of type (3), but (M - 1)/2 special 
jokers of type (9), each of them will contribute to a 
different proposal according to their value n: the large n 
will yield better information on long distances, while 
the reverse is true of the small ones. The basic joker (3) 
is a neutral one and may be used as a kind of 'referee'. 
After having received these sets of information, a new 
proposal to the correct structure has to be given. This 
procedure may be repeated as long as the use of (4) and 
(10) result in a,~, different from the experimental ones. 
Since they are known within certain limits of error only, 
the dead end of this process may be reached at an early 
stage. It should be emphasized, however, that a 
proposal of the complete structure has to be developed. 
In the case that no final proposal can be offered, 
solutions for phases using (6), (8) and (9) have to be 
found. 

Summarizing, we may conclude that any structure 
determination can be performed in several approxima- 
tions. Since the latent lattice with the assignment of 
atomic positions to the points of the lattice represents 
the zero approximation to the structure, the next step 
must use some further information on phases or 

structure in order to get a first approximation to the 
structure. Phases known from experimental data or by 
the a w transformation reduce the number of unknown 
phases by one (or two). More effective is the chemical 
method, which may be applied if some information on 
the structure is available. This information may be 
introduced directly into the set of equations (6) or (9), 
with the effect that the addition of a single position to 
M 0 known positions may result in M 0 new equations, 
subject to the condition that they are independent. If 
sufficient equations have been found, the phases may 
directly be determined. For a protein structure, this 
number is still very large but the method of using latent 
superlattices may be used to solve the problem with a 
reduced number of equations. Since this method is 
useful only for 3D structures, it will be discussed very 
briefly in the following chapter. 

3. Latent superlattices 

Let us now define the nth latent superlattice. If M is not 
divisible by n, a new lattice can be defined with the 
n-fold lattice constant naI. As shown in Fig. 2(b) for 
n = 2, the points of this superlattice coincide with the 
same s(v/M) but in another sequence. The unit cell of 
the structure is doubled with respect to the lattice with 
n = 1 and the first half of this larger cell covers the 
even-numbered points, the second half the odd-num- 
bered ones. Since this latent superlattice contains the 
same number of points as the basic latent lattice, the 
number of Fc's is invariant and it may be shown with 
the aid of Fourier transforms that the Fc's are the same 
in another sequence. This property yields strong 
correlations between Fc's. This may easily be seen in 
the case of M = e v e n  (compare with Fig. 2a). 
Obviously, the latent superlattice decomposes into two 
(displaced) structures, each of them containing just half 
the number of points of the basic latent lattice. 
Consequently, the structure is described by two 

0 = 2. lateftt superlatticel 

x = 2. latent supedattice 2 

M/2 M 3/2M 2M 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

(a) 

(b) 

M/2 M 3M12 2M 

1 3 5 7 9 101 2 4 6 8 10 

Fig. 2. Correlations between latent lattice and second latent 
superlattices: (a) M = even, (b) M = odd. 
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interpenetrating lattices, one of them being a kind of 
raster with respect to the second one. In a first 
approximation to the correct structure, the atoms of 
the interpenetrating lattice may be placed exactly in 
between the first using Fc's  that have to be calculated 
according to the displacement law of Fourier transfor- 
mation. Obviously, there is no significant difference 
between the even and the odd case for complicated 
structures. Therefore, similar correlations exist 
between the two corresponding sets of Fc's  for 
M = odd. 

Summarizing, we may conclude that the reduction of 
the number of Fc 's  seems to be important in the case of 
very complicated structures such as proteins or 
compounds of similar complexity. In the 3D case, the 
2 x 2 x 2 superlattice yields a fair description of the 
structure with a lower resolution given by the raster. 
Once this problem has been solved, the transition to 
high resolution is no more than a question of computer 
capacity. The reason for the correlation of phases is 
obvious: the interpenetration avoids mutual trespassing 
of neighbouring points even at a long distance. The 
complete discussion of the powerful properties of latent 
superlattices will be given in a later paper, treating the 
3D theory of phase determination using generalized 
latent lattices. 

4. Example 

Let us now discuss the following simple 1D structure in 
order to elucidate the procedure, rather than to 
demonstrate its effectiveness. A chain structure with 
11 atoms is defined, consisting of three molecules, two 
of them with four atoms (Figs. 3a-c). The following 
distances are assumed: 

(i) (three atoms) dl0 = 1.3, d o = 1.5.A, intermolecu- 
lar distance between 1 and 2 d~ -- 3.9 A; 

(ii) (four atoms), d 2 = 1.3, d 3 = 1.2, d4 = 1.5,~, 
intermolecular distance d 5 = 3.5; 

(iii) (four atoms) d 6 = 1.6, d7 = 1.5, d 8 = 1.3/k, 
intermolecular distance d 9 = 3.4 A. 

0 1 2 3 4 5 6 7 8 9 10 0 

• ..~,...- .,¢ "..-:.-_ 
*~ 

Fig. 3. Hypothetical structure of  three molecules and some of  their 
derived functions: (a) molecular structure, (b) s(v/M), (c) full line 
Adl, ,  broken line Ad2~, dotted line Ad3~. 

Table 1. s(v/M), Adl~ and Ad3~ for the hypothetical 
structure consisting of three molecules 

Str = hypothetical structure, I = approximation I, II = approximation 
I I .  

s(v/M) Adlv Ad3v 

v Str I II Str I II Str I I1 

0 0 0 0 -0 .5  -0 .6  -0 .6  +0.7 +0.6 +0.7 
1 -0 .5  -0 .6  -0 .6  +1.9 +1.8 +1.9 +0.4 +0.6 +0.7 
2 +1.4 +1.2 +1.3 -0 .7  -0 .6  -0 .6  -2 .0  -1 .8  -1 .8  
3 +0.7 +0.6 +0.7 -0 .8  -0 .6  -0 .6  +0.2 +0.3 +0.3 
4 -0.1 0 +0.1 -0 .5  -0 .6  -0 .6  +0.6 +0.3 +0.3 
5 -0 .6  -0 .6  -0 .5  +1.5 +1.5 +1.5 +0.6 +0.3 +0.3 
6 +0.9 +0.9 +1.0 -0 .4  -0 .6  -0 .6  -1 .6  -1 .8  -1 .8  
7 +0.5 +0.3 +0.4 -0 .5  -0 .6  -0 .6  +0.2 +0.3 +0.2 
8 +0 -0 .3  -0 .2  -0 .7  -0 .6  -0 .6  0 +0.3 +0.2 
9 -0 .7  -0 .9  -0 .8  +1.4 +1.5 +1.4 +0.2 +0.3 +0.2 
10 +0.7 +0.6 +0.6 -0 .7  -0 .6  -0 .6  +0.7 +0.6 +0.7 

Table 2. (a) Adl, e +dl,_ v and (b) Ad3,, -t- d3,_ ¢ for the 
hypothetical structure and models I and H 

Str I H 
(a) 
Adl, o + A d L l  o - 1 . 2  - 1 . 2  - 1 . 2  
Adl. 1 + Adl, 9 +3 .3  +3 .3  +3 .3  
AdL2 +z~dLs --1.4 --1.2 --1.2 
AdL3 + AdL7 --1.3 --1.2 --1.2 
Adl, 4 + ddl.  6 --0.9 --1.2 --1.2 

(b) 
Ad3.10 + Ad3. 9 +0 .9  +0 .9  +0 .9  
Ad3, 0 + Ad3, s +0 .7  +0 .9  +0 .9  
Ad3A + Ad3. 7 +0 .6  +0 .9  +0 .9  
Ad3.2 + Ad3,6 --3.6 --3.6 --3.6 
Ad3, 3 + Ad3, 5 +0 .8  +0 .6  +0 .6  

Str I II 

Adl. 0 -- Adl.lO +0 .2  0 0 
AdIA - Adl, 9 +0 .5  0.3 0.5 
Adl. 2 -- Adl. s 0 0 0 
Adl, 3 -- Adl, 7 --0.3 0 0 
Adl,4 - Adl,6 - 0 . 1  0 0 

Ad3.10 -- Ad3.9 +0 .5  0.3 0.5 
Ad3, 0 -  Ad3. s +0 .7  0.3 0.5 
Ad3. ~ -- Ad3, 7 +0 .2  0.3 0.5 
Ad3. 2 -- Ad3, 6 --0.4 0 0 
Ad3, 3 -- Ad3. 5 --0.4 0 0 

With these distances, s(v/M), Ad~v and Ad3v were 
calculated (Table 1). Using (4), their Fc's  a h, expi~o h, 
(Table 3) were determined. The following structural 
information was demanded: (i) lattice constant = 22 A; 
(ii) average intramolecular distances -- 1.4 A,; (iii) three 
molecules as described above; (iv) acentric structure. 
Using this information, we get the following idealized 
structural distances: d o = d 2 -"  d 3 = d 4 . =  d 6 = d 7 - -  

d s = dl0 = 1.4 ,~,, d 1 = d 5 = d 9 = 3.6 A. Unfor- 
tunately, this idealized structure is centrosymmetric. 
For this reason, the second molecule was .arbitrarily 
displaced by 0.2/k (d 1 = 3.8, d 5 = d 9 "- 3.5 A) in order 
to break this unwanted symmetry (model I). For a 
second (better) model H,  the correct intermolecular 
distances (3.9, 3.5, 3.4A) were used. The s(v/M) 
values calculated from the distances of both models are 
given in Table 1. a h, and tp h, were calculated according 
to (4) (see Table 3): their agreement with the 'true' 
values of the structure is poor. 

In order to get better phases, the second possibility of 
phase determination was tested. Using (6), tables of 

Ad.v, a h, sin(n'nh'/M) cos(ce~,v) 

and 
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Table 3. a h, and  ~Ph" as ca lcu la ted  f r o m  equat ion  (3) 

Last column: calculated phases t¢3, ~o 4, ~05 are averaged phases from 
models I and II. 

Str I lI 
a~ 0.995 0.1496 0.1414 
tp~ -100.0 -114.0 -105.0 -109.3 
a 2 0.1731 0.1295 0.1252 
~o 2 -116.6 -108.7 -101.5 -115.8 
a 3 0.3530 0.3543 0.3541 

94.0 92.6 91.6 92 
a 4 0.1286 0.1110 0.1109 
~P4 86.0 86.4 87.8 87 
a s 0.1713 0.1834 0.1827 
¢P5 88.1 83.5 86.1 84.2 

It should be pointed out that the phases ~0 h, used in the 
new method are much more sensitive to structural 
changes than the phases in conventional structure 
analysis. This is because these phases determine 
displacements rather than electron density. It is self- 
evident that the accuracy of phases is essentially 
determined by the errors in ah,. Consequently, much 
care has to be taken for their correct determination. 
This procedure will be effectively supported by some 
phases, determined experimentally in conventional 
reciprocal space. Their transformation to reciprocal 
shift space has been described in I. 

a h, s in(rrnh ' /M)  sin(a~h,~) 

as well as their sums and differences according to (7) 
were calculated. Two of the latter are given in Table 2. 
Astonishingly, there were some sums of Ad,~, almost 
independent of  the model used, namely AriEl + AdL9 
and Ad3. 2 + Ad3. 6. As factors of the corresponding 
Yh' - -  sin ~o h, and x h, = cos ~0h,, they yield equations 
which were selected for a first calculation of phases. 
They are: 

Adll + Adl9 

= --0.15y I + 0.1 lY2 + 1.80Y3 + 0.90y4 + 0.56Y5 

= 3.3A, 

z3d32 q- z3d36 

- -0 .25y!  + 0.90y 2 -- 1.47y 3 - 0 . 0 4 1 2 y  4 - 1.05y 5 

= -3 .6A.  

The reader may check that these equations determine 
the approximate values of the phase satisfactorily to: 

Yl = --0.95, Y2 -- --0.90, Y3 --Y4 -~ Y5 = 1; 

~Pl = --109.3, ~02 = --115.8, 

~03 = ~04 = tp 5 = 90 ° (COS ~0~, COS ~02 negative). 

According to Table 3, the values of the last three 
Yh' are so near to unity that they could be excluded 
from a more precise evaluation. From (3), these 
phases were used to calculate a new set of s ( v / M ) .  
The resulting distances compared with the correct 
ones in parentheses are: d o = 1.43 (1.50), 
d~ = 3.92(3.90), d 2 : 1.31(1.30), d 3 : 1.26(1.20), 
d 4 = 1.47(1.50), d 5 = 3.50(3.50), d 6 = 1.65(1.60), 
d 7 = 1 .43(1 .50) , .  ds = 1.29(1.30), d9 = 3.38(3.40), 
dlo = 1.36 (1.30) A. Remembering the simplified 
procedure applied, the result is convincing because 
all displacement involved occurs in the correct 
direction. Since no chemical feeling can be devel- 
oped for this model, the author had to stop here. In 
the next step, improbable distances have to be 
excluded. This results in a new proposal for a 
second application of the whole procedure. 

5. Conclus ions  

The method of latent lattices and superlattices has been 
explained in the 1D case only. Obviously, there is no 
difficulty in rewriting all equations used in this paper in 
their 3D form. All scalar quantities, typical for the 1D 
case, have to be replaced by their corresponding vectors 
and their scalar products. There is only one essential 
difference: the arrangement of phase equations (6) and 
(7) is more complicated and it may become difficult to 
correlate all structural information with the system of 
equations. This is more or less a question of computer 
programs, however, which have to be developed for the 
new method. For this reason, experimental measure- 
ments of  phases may become very important. As 
pointed out above, the crucial point of this method is 
to get sufficient information to start the approximations. 
Experimental measurements of phases and their trans- 
formation to phases of the latent lattice as described in I 
may be determined with a considerable amount of error. 
As has been shown above, this does not hamper the new 
method in principle. 

The author regrets that, because of the lack of an 
effective computer program, the example given above 
was too poor to elucidate the power of the new method 
adequately. Since it is based on equations rather than on 
statistics, there is no doubt that the method should be 
superior to any other theoretical method presently in 
use. The great advantage results from the fact that all 
information available can be used, and that the weak 
intensities are as important as the strong ones. The 
inclusion of disorder, anomalous scattering and other 
properties modifies the equations to be used but does not 
exclude their application. This is specifically valid for 
proteins, where the short-range order of  the water 
molecules has to be included for a reliable structure 
determination. 

The author thanks Mrs R. Wunderlich for her kind 
assistance in preparing the manuscript of  this paper. 
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